机译:针对项目内和跨项目类不平衡问题的基于SDA的改进的缺陷预测框架
State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan, China;
State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan, China;
State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan, China;
Department of Computer Science and Technology, Nanjing University, Nanjing, China;
Support vector machines; Learning systems; Predictive models; Software; Software engineering; Measurement;
机译:一种用于项目内和跨项目缺陷预测的新型班级不平衡学习方法
机译:基于改进转移Naive Bayes算法的项目内和跨项目软件缺陷预测
机译:基于去噪自动化器和卷积神经网络的项目内和跨项目的跨项目立交缺陷预测
机译:跨项目和项目内部半监督软件缺陷预测问题使用统一解决方案研究
机译:交叉项目缺陷预测的软件度量聚类方法
机译:一种综合的计算基础的框架上两步随机森林算法提高蛋白质中的锌结合位点预测
机译:项目内部软件缺陷预测的改进CNN模型