首页> 外文期刊>Software Engineering, IEEE Transactions on >An Improved SDA Based Defect Prediction Framework for Both Within-Project and Cross-Project Class-Imbalance Problems
【24h】

An Improved SDA Based Defect Prediction Framework for Both Within-Project and Cross-Project Class-Imbalance Problems

机译:针对项目内和跨项目类不平衡问题的基于SDA的改进的缺陷预测框架

获取原文
获取原文并翻译 | 示例

摘要

Background. Solving the class-imbalance problem of within-project software defect prediction (SDP) is an important research topic. Although some class-imbalance learning methods have been presented, there exists room for improvement. For cross-project SDP, we found that the class-imbalanced source usually leads to misclassification of defective instances. However, only one work has paid attention to this cross-project class-imbalance problem. Objective. We aim to provide effective solutions for both within-project and cross-project class-imbalance problems. Method. Subclass discriminant analysis (SDA), an effective feature learning method, is introduced to solve the problems. It can learn features with more powerful classification ability from original metrics. For within-project prediction, we improve SDA for achieving balanced subclasses and propose the improved SDA (ISDA) approach. For cross-project prediction, we employ the semi-supervised transfer component analysis (SSTCA) method to make the distributions of source and target data consistent, and propose the SSTCA+ISDA prediction approach. Results. Extensive experiments on four widely used datasets indicate that: 1) ISDA-based solution performs better than other state-of-the-art methods for within-project class-imbalance problem; 2) SSTCA+ISDA proposed for cross-project class-imbalance problem significantly outperforms related methods. Conclusion. Within-project and cross-project class-imbalance problems greatly affect prediction performance, and we provide a unified and effective prediction framework for both problems.
机译:背景。解决项目内部软件缺陷预测(SDP)的类不平衡问题是一个重要的研究课题。尽管已经提出了一些班级失衡的学习方法,但仍有改进的空间。对于跨项目SDP,我们发现类不平衡源通常会导致缺陷实例的错误分类。但是,只有一项工作关注了这个跨项目的类不平衡问题。目的。我们旨在为项目内和跨项目类不平衡问题提供有效的解决方案。方法。为了解决这些问题,引入了子类判别分析(SDA),一种有效的特征学习方法。它可以从原始指标中学习具有更强大分类能力的功能。对于项目内预测,我们改进了SDA以实现平衡的子类,并提出了改进的SDA(ISDA)方法。对于跨项目预测,我们采用半监督转移成分分析(SSTCA)方法使源数据和目标数据的分布一致,并提出了SSTCA + ISDA预测方法。结果。在四个广泛使用的数据集上进行的广泛实验表明:1)基于ISDA的解决方案在项目内类不平衡问题上的表现优于其他最新技术。 2)针对跨项目类不平衡问题提出的SSTCA + ISDA明显优于相关方法。结论。项目内和跨项目类不平衡问题极大地影响了预测性能,我们为这两个问题提供了一个统一而有效的预测框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号