首页> 外文期刊>Soft Computing >Learning Based Neural Similarity Metrics for Multimedia Data Mining
【24h】

Learning Based Neural Similarity Metrics for Multimedia Data Mining

机译:基于学习的多媒体数据挖掘神经相似度度量

获取原文
获取原文并翻译 | 示例

摘要

Multimedia data mining refers to pattern discovery, rule extraction and knowledge acquisition from multimedia database. Two typical tasks in multimedia data mining are of visual data classification and clustering in terms of semantics. Usually performance of such classification or clustering systems may not be favorable due to the use of low-level features for image representation, and also some improper similarity metrics for measuring the closeness between multimedia objects as well. This paper considers a problem of modeling similarity for semantic image clustering. A collection of semantic images and feed-forward neural networks are used to approximate a characteristic function of equivalence classes, which is termed as a learning pseudo metric (LPM). Empirical criteria on evaluating the goodness of the LPM are established. A LPM based k-Mean rule is then employed for the semantic image clustering practice, where two impurity indices, classification performance and robustness are used for performance evaluation. An artificial image database with 11 semantics is employed for our simulation studies. Results demonstrate the merits and usefulness of our proposed techniques for multimedia data mining.
机译:多媒体数据挖掘是指从多媒体数据库中进行模式发现,规则提取和知识获取。多媒体数据挖掘中的两个典型任务是视觉数据分类和语义聚类。通常,由于使用低级特征进行图像表示以及一些不适当的相似性度量(用于测量多媒体对象之间的接近度),此类分类或聚类系统的性能可能也不理想。本文考虑了语义图像聚类的建模相似性问题。语义图像和前馈神经网络的集合用于近似等效类的特征函数,这被称为学习伪度量(LPM)。建立了评估LPM优劣的经验标准。然后将基于LPM的k-Mean规则用于语义图像聚类实践,其中将两个杂质指数,分类性能和鲁棒性用于性能评估。我们的仿真研究采用了具有11种语义的人工图像数据库。结果证明了我们提出的多媒体数据挖掘技术的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号