首页> 外文期刊>Soft Computing >A Hierarchical Fuzzy Clustering-based System to Create User Profiles
【24h】

A Hierarchical Fuzzy Clustering-based System to Create User Profiles

机译:基于层次模糊聚类的系统来创建用户配置文件

获取原文
获取原文并翻译 | 示例

摘要

The rapid development of the World Wide Web as a medium of commerce and information dissemination has generated a growing interest of web portal managers in systems able to identify user profiles from the web access logs. The interpretation of these profiles can help re-organize the web portal, e.g., by restructuring the site’s content more efficiently, or even to build adaptive web portals, i.e., portals whose organization and presentation change depending on the specific visitor’s needs. In this paper, we assume that the pages of the web portal have been prearranged in a number of different categories. We introduce a systematic approach to determine a hierarchy of user profiles from the history of users’ accesses to the categories. First, we filter the access log by removing both occasional users and categories of poor interest. Then, we apply an Unsupervised Fuzzy Divisive Hierarchical Clustering (UFDHC) algorithm to cluster the users of the web portal into a hierarchy of fuzzy groups characterized by a set of common interests and each represented by a prototype, which defines the profile of the group typical member. To identify the profile a specific user belongs to, we propose a novel classification method which completely exploits the information contained in the hierarchy. To prove the effectiveness of our approach, we apply the UFDHC algorithm to access log data collected over a period of 15 days and use the classification method to associate a profile with the users defined by access log data collected during subsequent 60 days. Finally, we highlight the good characteristics of our system by comparing our results with the ones obtained by applying a profiling system based on a modified version of the fuzzy C-means.
机译:万维网作为商业和信息传播的媒介的迅速发展引起了门户网站管理者对能够从网络访问日志中识别用户资料的系统的兴趣。对这些配置文件的解释可以例如通过更有效地重组网站内容来帮助重新组织Web门户,甚至可以构建自适应Web门户,即,其组织和显示方式根据特定访问者的需求而变化的门户。在本文中,我们假设Web门户的页面已按许多不同类别进行了预先安排。我们引入一种系统的方法,根据用户访问类别的历史记录来确定用户个人资料的层次结构。首先,我们通过删除偶发用户和兴趣不佳的类别来过滤访问日志。然后,我们应用无监督模糊分裂层次聚类(UFDHC)算法,将门户网站的用户聚类为具有一组共同兴趣并且每个原型均代表的模糊组层次,该模糊组定义了典型组的配置文件会员。为了识别特定用户所属的个人资料,我们提出了一种新颖的分类方法,该方法完全利用了层次结构中包含的信息。为了证明我们方法的有效性,我们将UFDHC算法用于访问在15天内收集的日志数据,并使用分类方法将配置文件与在随后60天内收集的访问日志数据定义的用户相关联。最后,通过将我们的结果与应用基于模糊C均值的修改版本的剖析系统获得的结果进行比较,我们突出了系统的良好特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号