首页> 外文期刊>Soft Computing >Robust confidence intervals applied to crossover operator for real-coded genetic algorithms
【24h】

Robust confidence intervals applied to crossover operator for real-coded genetic algorithms

机译:将稳健的置信区间应用于交叉算子以进行实数编码遗传算法

获取原文
获取原文并翻译 | 示例

摘要

In this work we propose a new approach to crossover operators for real-coded genetic algorithms based on robust confidence intervals. These confidence intervals are an alternative to standard confidence intervals. In this paper, they are used for localising the search regions where the best individuals are placed. Robust confidence intervals use robust localization and dispersion estimators that are highly recommendable when the distribution of the random variables is not known or is distorted. Both situations are likely when we are dealing with the best individuals of the population, especially if the problem under study is multimodal. The performance of the crossovers based on robust intervals is evaluated using a well characterised set of optimisation problems. We have chosen problems with different features of modality, separability, regularity, and correlation among their variables. The results show that the performance of the crossovers based on robust confidence intervals is less dependent on the problem than the performance of the crossovers based on Gaussian confidence intervals. We have also made comparisons between several standard crossovers that show very interesting results, which support the idea underlying the defined operators.
机译:在这项工作中,我们提出了一种基于鲁棒置信区间的实数遗传算法交叉算子的新方法。这些置信区间是标准置信区间的替代方法。在本文中,它们用于对放置最佳个人的搜索区域进行本地化。稳健的置信区间使用稳健的局部化和色散估计量,当随机变量的分布未知或失真时,强烈建议使用稳健的局部化和分散估计量。当我们与人口中最好的人打交道时,两种情况都有可能发生,尤其是在所研究的问题是多模式的情况下。使用一组特征明确的优化问题,可以评估基于鲁棒区间的分频器的性能。我们选择了模态,可分离性,规律性以及变量之间相关性不同的问题。结果表明,与基于高斯置信区间的交叉性能相比,基于鲁棒置信区间的交叉性能对问题的依赖性较小。我们还对显示出非常有趣结果的几个标准分频器进行了比较,这些结果支持了所定义的运算符的思想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号