首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >A novel hybrid immune-based GA for dynamic routing to multiple destinations for overlay networks
【24h】

A novel hybrid immune-based GA for dynamic routing to multiple destinations for overlay networks

机译:一种新颖的基于混合免疫的遗传算法,可动态路由到覆盖网络的多个目标

获取原文
获取原文并翻译 | 示例

摘要

Overlay networks play an important role in group communication applications in Internet. These applications require better efficiency in terms of delay, cost and load balancing. This paper presents an artificial immune system (AIS)-based hybrid genetic algorithm for the construction of Quality of Service (QoS) multicast tree among multicast service nodes in overlay network which optimizes path delivery, load-balancing variance and cost under bounded delay–degree constraint. This paper proposes an alternative AIS-based approach to handle the constraints instead of penalty function in overlay multicast routing problem. The clonal selection method of AIS is incorporated into the genetic algorithm (GA) to improve the diversity–convergence relationship which leads to optimized results. Proposed algorithm has the following features: (1) embedded problem specific local search function along with random point crossover to fine tune the search; (2) AIS principle is used to solve the constraints in GA; (3) clonal selection method to get the optimized results. Adaptable procedure is embedded into algorithm to handle the end user join/end user drop. Non-parametric statistical analysis has performed to show the significant difference among the proposed and existing algorithms. Simulation results reveal that our proposed algorithm produces better results in terms of cost, average path length, user rejection rate and convergence. Statistical analysis is also performed to assure the significance of the differences among the tested algorithms.
机译:覆盖网络在Internet的组通信应用中起着重要作用。这些应用在延迟,成本和负载平衡方面需要更高的效率。本文提出了一种基于人工免疫系统(AIS)的混合遗传算法,用于在覆盖网络中的组播服务节点之间构建服务质量(QoS)组播树,该算法在受限延迟度下优化路径传递,负载平衡方差和成本约束。本文提出了一种基于AIS的替代方法来处理约束,而不是覆盖组播路由问题中的惩罚函数。 AIS的克隆选择方法被纳入遗传算法(GA)中,以改善多样性-收敛关系,从而获得最佳结果。提出的算法具有以下特点:(1)嵌入问题特定的局部搜索功能,以及随机点交叉对搜索进行微调; (2)采用AIS原理求解遗传算法中的约束条件; (3)克隆选择法得到优化结果。适应性过程嵌入到算法中,以处理最终用户加入/最终用户掉线。非参数统计分析已显示出所提出算法与现有算法之间的显着差异。仿真结果表明,我们提出的算法在成本,平均路径长度,用户拒绝率和收敛性方面产生了更好的结果。还执行统计分析以确保所测试算法之间差异的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号