首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Multiobjective evolutionary clustering of Web user sessions: a case study in Web page recommendation
【24h】

Multiobjective evolutionary clustering of Web user sessions: a case study in Web page recommendation

机译:Web用户会话的多目标进化集群:Web页面推荐中的案例研究

获取原文
获取原文并翻译 | 示例

摘要

In this study, we experiment with several multiobjective evolutionary algorithms to determine a suitable approach for clustering Web user sessions, which consist of sequences of Web pages visited by the users. Our experimental results show that the multiobjective evolutionary algorithm-based approaches are successful for sequence clustering. We look at a commonly used cluster validity index to verify our findings. The results for this index indicate that the clustering solutions are of high quality. As a case study, the obtained clusters are then used in a Web recommender system for representing usage patterns. As a result of the experiments, we see that these approaches can successfully be applied for generating clustering solutions that lead to a high recommendation accuracy in the recommender model we used in this paper. Keywords Multiobjective clustering - Multiobjective evolutionary algorithms - Sequence clustering - Graph clustering - User session clustering
机译:在这项研究中,我们尝试使用几种多目标进化算法来确定一种适合的Web用户会话聚类方法,该方法由用户访问的Web页面序列组成。我们的实验结果表明,基于多目标进化算法的序列聚类方法是成功的。我们看一个常用的聚类有效性指数来验证我们的发现。该指数的结果表明聚类解决方案是高质量的。作为案例研究,然后将获得的群集用于Web推荐器系统中以表示使用模式。作为实验的结果,我们看到这些方法可以成功地应用于生成聚类解决方案,从而在我们在本文中使用的推荐器模型中导致很高的推荐精度。关键词多目标聚类-多目标进化算法-序列聚类-图聚类-用户会话聚类

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号