首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >A genetic programming method for protein motif discovery and protein classification
【24h】

A genetic programming method for protein motif discovery and protein classification

机译:蛋白质基序发现和蛋白质分类的遗传编程方法

获取原文
获取原文并翻译 | 示例

摘要

Proteins can be grouped into families according to some features such as hydrophobicity, composition or structure, aiming to establish common biological functions. This paper presents MAHATMA—memetic algorithm-based highly adapted tool for motif ascertainment—a system that was conceived to discover features (particular sequences of amino acids, or motifs) that occur very often in proteins of a given family but rarely occur in proteins of other families. These features can be used for the classification of unknown proteins, that is, to predict their function by analyzing their primary structure. Experiments were done with a set of enzymes extracted from the Protein Data Bank. The heuristic method used was based on genetic programming using operators specially tailored for the target problem. The final performance was measured using sensitivity, specificity and hit rate. The best results obtained for the enzyme dataset suggest that the proposed evolutionary computation method is effective in finding predictive features (motifs) for protein classification.
机译:可以根据某些功能(例如疏水性,组成或结构)将蛋白质分为多个家族,以建立共同的生物学功能。本文介绍了MAHATMA(一种基于模因算法的高度适用的基元确定工具),该系统旨在发现特征(氨基酸序列或基序的特定序列),该特征在给定家族的蛋白质中经常发生,而在蛋白质家族中却很少发生。其他家庭。这些功能可用于未知蛋白质的分类,即通过分析其一级结构来预测其功能。实验是从蛋白质数据库中提取的一组酶进行的。所使用的启发式方法基于遗传编程,使用针对目标问题专门定制的算子。使用敏感性,特异性和命中率测量最终表现。从酶数据集中获得的最佳结果表明,所提出的进化计算方法可有效地找到蛋白质分类的预测特征(基序)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号