首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Learning a tensor subspace for semi-supervised dimensionality reduction
【24h】

Learning a tensor subspace for semi-supervised dimensionality reduction

机译:学习张量子空间以进行半监督降维

获取原文
获取原文并翻译 | 示例

摘要

The high-dimensional data is frequently encountered and processed in real-world applications and unlabeled samples are readily available, but labeled or pairwise constrained ones are fairly expensive to capture. Traditionally, when a pattern itself is an n 1 × n 2 image, the image first has to be vectorized to the vector pattern in Ân1 ×n2 Re^{{n_{1} times n_{2} }} by concatenating its pixels. However, such a vector representation fails to take into account the spatial locality of pixels in the images, which are intrinsically matrices. In this paper, we propose a tensor subspace learning-based semi-supervised dimensionality reduction algorithm (TS2DR), in which an image is naturally represented as a second-order tensor in Ân1 ÄÂn2 Re^{{n_{1} }} otimes Re^{{n_{2} }} and domain knowledge in the forms of pairwise similarity and dissimilarity constraints is used to specify whether pairs of instances belong to the same class or different classes. TS2DR has an analytic form of the global structure preserving embedding transformation, which can be easily computed based on eigen-decomposition. We also verify the efficiency of TS2DR by conducting unbalanced data classification experiments based on the benchmark real-word databases. Numerical results show that TS2DR tends to capture the intrinsic structure characteristics of the given data and achieves better classification accuracy, while being much more efficient.
机译:高维数据在实际应用中经常遇到并处理,未标记的样本很容易获得,但是标记或成对约束的样本捕获起来相当昂贵。传统上,当图案本身是n 1 ×n 2 图像时,必须首先将图像矢量化为Â n 1中的矢量图案×n 2 Re ^ {{n_ {1}乘以n_ {2}}},将其像素串联在一起。但是,这样的矢量表示不能考虑图像中像素的空间位置,而像素本身就是矩阵。在本文中,我们提出了一种基于张量子空间学习的半监督降维算法(TS 2 DR),其中图像自然地表示为n n中的二阶张量 1 Ä n 2 Re ^ {{n_ {1}}}经常Re ^ {{n_ {2}}}成对相似和不相似约束形式的域知识和领域知识用于指定实例对属于同一类还是不同类。 TS 2 DR具有保留嵌入变换的全局结构的解析形式,可以根据特征分解轻松地进行计算。我们还通过基于基准实词数据库进行不平衡数据分类实验来验证TS 2 DR的效率。数值结果表明,TS 2 DR倾向于捕获给定数据的固有结构特征,并具有更好的分类精度,同时效率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号