首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Fast parallel genetic programming: multi-core CPU versus many-core GPU
【24h】

Fast parallel genetic programming: multi-core CPU versus many-core GPU

机译:快速并行遗传编程:多核CPU与多核GPU

获取原文
获取原文并翻译 | 示例

摘要

Genetic Programming (GP) is a computationally intensive technique which is also highly parallel in nature. In recent years, significant performance improvements have been achieved over a standard GP CPU-based approach by harnessing the parallel computational power of many-core graphics cards which have hundreds of processing cores. This enables both fitness cases and candidate solutions to be evaluated in parallel. However, this paper will demonstrate that by fully exploiting a multi-core CPU, similar performance gains can also be achieved. This paper will present a new GP model which demonstrates greater efficiency whilst also exploiting the cache memory. Furthermore, the model presented in this paper will utilise Streaming SIMD Extensions to gain further performance improvements. A parallel version of the GP model is also presented which optimises multiple thread execution and cache memory. The results presented will demonstrate that a multi-core CPU implementation of GP can yield performance levels that match and exceed those of the latest graphics card implementations of GP. Indeed, a performance gain of up to 420-fold over standard GP is demonstrated and a threefold gain over a graphics card implementation.
机译:遗传编程(GP)是一种计算密集型技术,本质上也是高度并行的。近年来,通过利用具有数百个处理核心的多核图形卡的并行计算能力,在基于标准GP CPU的方法上已实现了显着的性能改进。这使得可以同时评估适用情况和候选解决方案。但是,本文将证明,通过充分利用多核CPU,也可以实现类似的性能提升。本文将介绍一个新的GP模型,该模型展示了更高的效率,同时还利用了高速缓存。此外,本文介绍的模型将利用Streaming SIMD扩展获得进一步的性能改进。还介绍了GP模型的并行版本,该版本优化了多线程执行和缓存。给出的结果将证明GP的多核CPU实施可以产生与GP的最新图形卡实施相匹配甚至超过的性能水平。实际上,与标准GP相比,性能提高了420倍,与图形卡实现相比,性能提高了3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号