首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Clustering-based initialization of Learning Classifier Systems Effects on model performance, readability and induction time
【24h】

Clustering-based initialization of Learning Classifier Systems Effects on model performance, readability and induction time

机译:学习分类器系统的基于聚类的初始化对模型性能,可读性和归纳时间的影响

获取原文
获取原文并翻译 | 示例

摘要

The present paper investigates whether an “informed” initialization process can help supervised LCS algorithms evolve rulesets with better characteristics, including greater predictive accuracy, shorter training times, and/or more compact knowledge representations. Inspired by previous research suggesting that the initialization phase of evolutionary algorithms may have a considerable impact on their convergence speed and the quality of the achieved solutions, we present an initialization method for the class of supervised Learning Classifier Systems (LCS) that extracts information about the structure of studied problems through a pre-training clustering phase and exploits this information by transforming it into rules suitable for the initialization of the learning process. The effectiveness of our approach is evaluated through an extensive experimental phase, involving a variety of real-world classification tasks. Obtained results suggest that clustering-based initialization can indeed improve the predictive accuracy, as well as the interpretability of the induced knowledge representations, and paves the way for further investigations of the potential of better-than-random initialization methods for LCS algorithms.
机译:本文研究“知情”初始化过程是否可以帮助监督的LCS算法发展具有更好特征的规则集,包括更好的预测准确性,更短的训练时间和/或更紧凑的知识表示。受先前研究的启发,进化算法的初始化阶段可能会对其收敛速度和所实现解决方案的质量产生重大影响,我们提出了一种监督学习分类器系统(LCS)类的初始化方法,该方法可提取有关通过预训练聚类阶段研究问题的结构,并通过将其转换为适合于学习过程初始化的规则来利用此信息。我们的方法的有效性通过一个广泛的实验阶段进行评估,其中涉及各种现实世界中的分类任务。获得的结果表明,基于聚类的初始化确实可以提高预测准确性以及所诱导知识表示的可解释性,并为进一步研究优于随机初始化的LCS算法的潜力铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号