首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Theoretical basis of parameter tuning for finding optima near the boundaries of search spaces in real-coded genetic algorithms
【24h】

Theoretical basis of parameter tuning for finding optima near the boundaries of search spaces in real-coded genetic algorithms

机译:参数调整的理论基础,用于在实编码遗传算法中找到搜索空间边界附近的最优值

获取原文
获取原文并翻译 | 示例

摘要

Studies on parameter tuning in evolutionary algorithms are essential for achieving efficient adaptive searches. This paper discusses parameter tuning in real-valued crossover operators theoretically. The theoretical analysis is devoted to improving robustness of real-coded genetic algorithms (RCGAs) for finding optima near the boundaries of bounded search spaces, which can be found in most real-world applications. The proposed technique for crossover-parameter tuning is expressed mathematically, and thus enables us to control the dispersion of child distribution quantitatively. The universal applicability and effect have been confirmed theoretically and verified empirically with five crossover operators. Statistical properties of several practical RCGAs are also investigated numerically. Performance comparison with various parameter values has been conducted on test functions with the optima placed not only at the center but also in a corner of the search space. Although the parameter-tuning technique is fairly simple, the experimental results have shown the great effectiveness.
机译:研究进化算法中的参数调整对于实现有效的自适应搜索至关重要。本文从理论上讨论了实值交叉算子的参数调整。理论分析致力于提高实数编码遗传算法(RCGA)的鲁棒性,以在有界搜索空间的边界附近找到最佳值,这在大多数现实应用中都可以找到。所提出的交叉参数调整技术可以用数学表达,从而使我们能够定量地控制子分布的离散。普遍适用性和效果已在理论上得到确认,并通过五个交叉算子进行了经验验证。还对一些实用的RCGA的统计特性进行了数值研究。已对测试功能进行了各种参数值的性能比较,其最佳值不仅位于搜索空间的中心,而且位于搜索空间的一角。尽管参数调整技术相当简单,但实验结果显示出了巨大的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号