首页> 外文期刊>Smart structures and systems >System identification of a super high-rise building via a stochastic subspace approach
【24h】

System identification of a super high-rise building via a stochastic subspace approach

机译:通过随机子空间方法对超高层建筑进行系统识别

获取原文
获取原文并翻译 | 示例

摘要

Abstract. System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.
机译:抽象。系统识别是应用结构健康监测和损坏检测技术的基本步骤。在这方面,发展识别策略是获得未损坏结构的可靠和可重复的基线模态参数的优先事项,以用作将来结构健康评估的参考。本文提出了使用数据驱动的随机子空间识别(SSI-data)方法以及适当的自动模式选择策略来识别中国广州新电视塔的模态参数的方法,该方法在先前的文献研究中被证明是成功的。这种众所周知的方法是基于聚类技术的,该聚类技术用于将结构模式与寄生噪声模式区分开。该方法适用于在ANCRiSST基准问题的任务I中提供的加速度测量,该测量涵盖环境激发下24小时连续监测结构响应。然后将这些记录细分为方便的数据集,并指出模态参数估计值随环境温度和平均风速的变化。为此,将同时考虑10分钟和1小时的记录。最后,使用基准内提供的结构矩阵与有限元模型预测进行比较,以检查通过SSI数据可以有效地识别出所考虑的频率间隔中包含的所有结构模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号