首页> 外文期刊>Smart structures and systems >Predicting wind-induced structural response with LSTM in transmission tower-line system
【24h】

Predicting wind-induced structural response with LSTM in transmission tower-line system

机译:在变速器塔线系统中预测风诱导的结构响应

获取原文
获取原文并翻译 | 示例

摘要

Wind-induced dynamic response of the nonlinear structure is critical for the structural safety and reliability. The traditional approaches for this response including observation or simulation focus on the structural health monitoring, the experiment, or finite element model development. However, all these approaches require high cost or computational investment. This paper proposes to predict the wind-induced dynamic response of the nonlinear structure with a novel deep learning approach, LSTM, and applies this in a structural lifeline system, the transmission tower-line system. By constructing the optimized LSTM architectures, the proposed method applies to both the linear structure, the single transmission tower and the nonlinear structure, the transmission tower-line system, with promising results for the dynamic and extreme response prediction. It can conclude that the layers and the hidden units have a strong impact on the LSTM prediction performance, and with proper training data set, the computational time can significantly decrease. A comparison surrogate model developed by CNN is also utilized to demonstrate the robustness of the LSTM-based surrogate model with limited data scale.
机译:风力诱导的非线性结构的动态响应对于结构安全性和可靠性至关重要。这种响应的传统方法包括观察或模拟关注结构健康监测,实验或有限元模型开发。但是,所有这些方法都需要高成本或计算投资。本文提出预测非线性结构的风引起的动态响应,具有新的深度学习方法,LSTM,并将其应用于结构生命线系统,传输塔线系统。通过构建优化的LSTM架构,所提出的方法适用于线性结构,单个传输塔和非线性结构,传输塔线系统,具有动态和极端响应预测的有希望的结果。可以得出结论,层和隐藏单元对LSTM预测性能产生强烈影响,并且通过适当的训练数据集,计算时间可以显着降低。 CNN开发的比较代理模型还用于展示基于LSTM的代理模型与有限的数据量表的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号