首页> 外文期刊>Smart structures and systems >Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement
【24h】

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

机译:最优倾斜度传感器放置的高速铁路桥的动态偏转监测

获取原文
获取原文并翻译 | 示例

摘要

Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.
机译:动态偏转监测是高速铁路桥梁结构健康监测的重要和关键部分。使用倾斜度计传感器进行此类应用时需要解决两个关键问题。这些包括构建倾斜偏转的一般表示模型,并解决不良逆问题以获得准确的动态偏转。本文提供了一种动态偏转监测方法,具有适用于高速铁路桥的最佳倾斜度计传感器。基于倾斜和位移模式形状矩阵之间的差分关系,使用倾斜偏转变换模型重建偏转形状。所提出的最佳传感器配置可用于选择符合所有可能传感器位置所需的精度和稳定性的倾斜偏转变换模型。在该研究中,使用条件号和信息熵来测量所选模式形状矩阵的不良状态,并评估不同传感器配置的预测性能。粒子群优化算法,遗传算法和人工鱼类群算法用于优化传感器位置放置。 5跨度高速铁路桥的数值模拟与实验验证结果表明,重建的偏转形状与真正的桥梁的偏转形状很好。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号