首页> 外文期刊>Smart Grid, IEEE Transactions on >Automated Control of Transactive HVACs in Energy Distribution Systems
【24h】

Automated Control of Transactive HVACs in Energy Distribution Systems

机译:能量分配系统中透气HVAC的自动控制

获取原文
获取原文并翻译 | 示例

摘要

Heating, Ventilation, and Air Conditioning (HVAC) systems contribute significantly to a building's energy consumption. In the recent years, there is an increased interest in developing transactive approaches which could enable automated and flexible scheduling of HVAC systems based on the customer demand and the electricity prices decided by the suppliers. Flexible and automated scheduling of the HVAC systems make it a prime source for participation in residential demand response or transactive energy systems. Therefore, it is of significant interest to identify an optimal strategy to control the HVAC systems. In this article, reducing the energy cost while keeping the comfort level acceptable to the users, we argue that such a control strategy should consider both the energy cost and user comfort simultaneously. Accordingly, we develop the control strategy through the solution of an optimization problem that balances between the energy cost and consumer's dissatisfaction. This optimization enables us to solve a decision-making problem through first price prediction and then choosing HVAC temperature settings throughout the day based on the predicted price, history of the price and HVAC settings, and outside temperature. More specifically, we formulate the control design as a Markov decision process (MDP) using deep neural networks and use Deep Deterministic Policy Gradients (DDPG)-based deep reinforcement learning algorithm to find the optimal control strategy for HVAC systems that balances between electricity cost and user comfort.
机译:加热,通风和空调(HVAC)系统对建筑的能耗有显着贡献。在近年来,对开发过度的方法的兴趣增加,这可以根据客户需求和供应商决定的电力价格启用HVAC系统的自动化和灵活调度。 HVAC系统的灵活和自动化调度使其成为参与住宅需求响应或缩放能量系统的主要来源。因此,确定控制HVAC系统的最佳策略是重大兴趣。在本文中,降低了能源成本,同时保持用户可接受的舒适程度,我们认为这样的控制策略应同时考虑能源成本和用户舒适。因此,我们通过解决能源成本与消费者不满之间的优化问题来制定控制策略。这种优化使我们能够通过首先价格预测来解决决策问题,然后根据预测的价格,价格和HVAC设置的历史以及外部温度选择HVAC温度设置。更具体地说,我们使用深神经网络将控制设计作为马尔可夫决策过程(MDP)制定,并使用深度确定性政策梯度(DDPG)的深度加强学习算法来查找电力成本之间平衡的HVAC系统的最佳控制策略用户舒适。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号