首页> 外文期刊>Smart Grid, IEEE Transactions on >Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-Constrained Levenberg-Marquardt Algorithm
【24h】

Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-Constrained Levenberg-Marquardt Algorithm

机译:柴油发电机模型使用混合箱约束的微电网模拟参数化levenberg-marquardt算法

获取原文
获取原文并翻译 | 示例

摘要

Existing generator parameterization methods, typically developed for large turbine generator units, are difficult to apply to small kW-level diesel generators in microgrid applications. This article presents a model parameterization method that estimates a complete set of kW-level diesel generator parameters simultaneously using only load-step-change tests with limited measurement points. This method provides a more cost-efficient and robust approach to achieve high-fidelity modeling of diesel generators for microgrid dynamic simulation. A two-stage hybrid box-constrained Levenberg-Marquardt (H-BCLM) algorithm is developed to search the optimal parameter set given the parameter bounds. A heuristic algorithm, namely Generalized Opposition-based Learning Genetic Algorithm (GOL-GA), is applied to identify proper initial estimates at the first stage, followed by a modified Levenberg-Marquardt algorithm designed to fine tune the solution based on the first-stage result. The proposed method is validated against dynamic simulation of a diesel generator model and field measurements from a 16kW diesel generator unit.
机译:通常用于大型涡轮发电机单元的现有发电机参数化方法,难以在微电网应用中施加到小型kW级柴油发电机。本文介绍了一种模型参数化方法,估计一组完整的KW级柴油发电机参数,同时使用具有有限的测量点的负载步骤更改测试。该方法提供了一种更具成本效益和坚固的方法来实现柴油发电机的高保真建模,用于微电网动态模拟。开发了一个两阶段混合盒约束的levenberg-Marquardt(H-BCLM)算法以在给定参数界限的最佳参数集。一种启发式算法,即广义基于对立的学习遗传算法(GOL-GA),应用于识别第一阶段的适当初始估计,然后是改进的Levenberg-Marquardt算法,该算法旨在根据第一阶段微调解决方案结果。该提出的方法是针对16KW柴油发电机单元的柴油发电机模型和现场测量的动态模拟验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号