首页> 外文期刊>Smart Grid, IEEE Transactions on >A Data-Driven Approach for Generating Synthetic Load Patterns and Usage Habits
【24h】

A Data-Driven Approach for Generating Synthetic Load Patterns and Usage Habits

机译:一种用于产生合成负载模式和使用习惯的数据驱动方法

获取原文
获取原文并翻译 | 示例

摘要

Today’s electricity grid is rapidly evolving to become highly connected and automated. These advancements have been mainly attributed to the ubiquitous communication/computational capabilities in the grid and the Internet of Things paradigm that is steadily permeating modern society. Another trend is the recent resurgence of machine learning which is especially timely for smart grid applications. However, a major deterrent in effectively utilizing machine learning algorithms is the lack of labelled training data. We overcome this issue in the specific context of smart meter data by proposing a flexible framework for generating synthetic labelled load (e.g., appliance) patterns and usage habits via a non-intrusive novel data-driven approach. We leverage on recent developments in generative adversarial networks (GAN) and kernel density estimators (KDE) to eliminate model-based assumptions that otherwise result in biases. The ensuing synthetic datasets resemble real datasets and lend to rich and diverse training/testing platforms for developing effective machine learning algorithms pertaining to consumer-side energy applications. Theoretical and practical studies presented in this paper highlight the viability and superior performance of the proposed framework.
机译:今天的电网正在快速发展,以高度连接和自动化。这些进步主要归因于网格中的无处不在的通信/计算能力和 mistory 范式稳步渗透现代社会。另一个趋势是最近的机器学习复兴,尤其及时适用于智能电网应用。然而,有效利用机器学习算法的主要威慑是缺乏标记的培训数据。我们通过提出用于通过非侵入式新颖的数据驱动方法产生合成标记负载(例如,设备)模式和使用习惯的灵活框架来克服智能仪表数据的具体背景下的这个问题。我们利用了生成的对抗网络(GAN)和内核密度估计(KDE)的最新发展,以消除基于模型的假设,否则会导致偏差。随后的合成数据集类似于实际数据集,并提供给丰富多样的培训/测试平台,用于开发与消费者侧能量应用有关的有效机器学习算法。本文提出的理论和实践研究突出了所提出的框架的可行性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号