首页> 外文期刊>Smart Grid, IEEE Transactions on >Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data
【24h】

Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data

机译:智能电表数据的基于深度学习的社会人口统计学信息

获取原文
获取原文并翻译 | 示例

摘要

Smart meters provide large amounts of data and the value of this data is getting increased attention because a better understanding of the characteristics of consumers helps utilities and retailers implement more effective demand response programs and more personalized services. This paper investigates how such characteristics can be inferred from fine-grained smart meter data. A deep convolutional neural network (CNN) first automatically extracts features from massive load profiles. A support vector machine then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the effectiveness of the proposed deep CNN-based method, which achieves higher accuracy in identifying the socio-demographic information about the consumers.
机译:智能仪表提供大量数据,此数据的价值正在受到提高注意,因为更好地了解消费者的特征,有助于公用事业和零售商实施更有效的需求响应计划和更多个性化服务。本文研究了如何从细粒度智能仪表数据推断出这些特性。深度卷积神经网络(CNN)首先自动提取来自大量负载配置文件的功能。然后支持向量机识别消费者的特征。进行全面的比较现有和先进的机器学习技术。关于爱尔兰数据集的案例研究证明了拟议的基于CNN的方法的有效性,这在识别有关消费者的社会人口统计信息方面取得了更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号