首页> 外文期刊>Smart Grid, IEEE Transactions on >Social Information Filtering-Based Electricity Retail Plan Recommender System for Smart Grid End Users
【24h】

Social Information Filtering-Based Electricity Retail Plan Recommender System for Smart Grid End Users

机译:基于社交信息过滤的智能电网最终用户电力零售计划推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Rapid growth of data in smart grids provides great potentials for the utility to discover knowledge of demand side and design proper demand side management schemes to optimize the grid operation. The overloaded data also impose challenges on the data analytics and decision making. This paper introduces the service computing technique into the smart grid, and proposes a personalized electricity retail plan recommender system for residential users. The proposed personalized recommender system (PRS) is based on the collaborative filtering technique. The energy consumption data of users are firstly collected from the smart meter, and then key energy consumption features of the users are extracted and stored into a user knowledge database (UKD), together with the information of their chosen electricity retail plans. For a target user, the recommender system analyzes his/her energy consumption pattern, find users having similar energy consumption patterns with him/her from the UKD, and then recommend most suitable pricing plan to the target user. Experiments are conducted based on actual smart meter data and retail plan data to verify the effectiveness of the proposed PRS.
机译:智能电网中数据的快速增长为公用事业发现需求方的知识并设计适当的需求方管理方案以优化电网运行提供了巨大潜力。过载的数据还对数据分析和决策提出了挑战。本文将服务计算技术引入智能电网,并为居民用户提供个性化的电力零售计划推荐系统。所提出的个性化推荐器系统(PRS)基于协作过滤技术。首先从智能电表收集用户的能耗数据,然后提取用户的关键能耗特征,并将其与所选电零售计划的信息一起存储到用户知识数据库(UKD)中。对于目标用户,推荐系统分析其能耗模式,从UKD查找与他/她具有相似能耗模式的用户,然后向目标用户推荐最合适的定价计划。根据实际的智能电表数据和零售计划数据进行实验,以验证所提出的PRS的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号