首页> 外文期刊>Smart Grid, IEEE Transactions on >Smart Home Cyberattack Detection Framework for Sponsor Incentive Attacks
【24h】

Smart Home Cyberattack Detection Framework for Sponsor Incentive Attacks

机译:赞助商激励攻击的智能家居网络攻击检测框架

获取原文
获取原文并翻译 | 示例

摘要

Sponsor incentive pricing is an emerging pricing scheme in smart home energy systems. It allows a supplier of smart appliances to co-pay the electricity bills of customers due to using their products, which boosts the sales of smart appliances in the sponsor program. More importantly, it facilitates to shift energy usage of incentive customers from peak to non-peak hours by designing the time-varying rate, which is inversely proportional to the total demand. Despite its effectiveness in bill reduction and load balancing, the sponsor incentive pricing scheme is vulnerable to various forms of cyberattacks. In this paper, we develop the first detection technique for cyberattacks that exploits the sponsor incentive pricing scheme. Our short-term detection algorithm uses binary logistic regression for learning the energy usage patterns and identifying anomaly ones. Leveraging the partially observable Markov decision process framework, our long-term detection algorithm optimizes the utility's decision of on-site inspections while minimizing the labor cost and the financial loss due to cyberattacks. The simulation results demonstrate that, for detection of rebate rate cyberattacks, the proposed algorithm reduces the peak-to-average ratio of the aggregate energy usage profile by 26.57% and 9.58%, compared with the no-detection scenario and a natural heuristic detection technique, respectively. For detection of sponsor incentive abuse, the maliciously elevated electricity bill is reduced by 46.03% and 15.30%, respectively.
机译:赞助商激励定价是智能家居能源系统中的新兴定价方案。它使智能设备的供应商能够因使用他们的产品而共同支付客户的电费,从而促进了赞助商计划中智能设备的销售。更重要的是,通过设计与总需求成反比的时变率,它有助于将激励客户的能源使用从高峰时段转换为非高峰时段。尽管发起人激励定价方案在减少账单和平衡负载方面很有效,但它容易受到各种形式的网络攻击的攻击。在本文中,我们开发了第一种利用赞助商激励定价方案的网络攻击检测技术。我们的短期检测算法使用二进制Logistic回归来学习能源使用模式并识别异常模式。利用部分可观察到的马尔可夫决策过程框架,我们的长期检测算法可以优化公用事业公司的现场检查决策,同时将人工成本和网络攻击造成的经济损失降至最低。仿真结果表明,与无检测方案和自然启发式检测技术相比,所提出的算法在检测返利率网络攻击时将总能耗曲线的峰均比降低了26.57%和9.58%。 , 分别。为了检测赞助商的激励滥用,恶意降低的电费分别减少了46.03%和15.30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号