首页> 外文期刊>Smart Grid, IEEE Transactions on >Enhancing Observability in Distribution Grids Using Smart Meter Data
【24h】

Enhancing Observability in Distribution Grids Using Smart Meter Data

机译:使用智能电表数据增强配电网中的可观察性

获取原文
获取原文并翻译 | 示例

摘要

Due to limited instrumentation, distribution grids are currently challenged by observability issues. On the other hand, smart meter data are communicated to utility operators from nodes with renewable generation and elastic demand. This paper employs grid data from metered buses toward inferring the underlying grid state. System nodes are partitioned into buses with time-varying injections that are assumed metered, and buses with relatively stationary conventional loads that are non-metered. Exploiting the variability at metered buses and the stationarity of conventional loads, the novel idea here is to solve the non-linear power flow (PF) equations jointly over consecutive time instants. By putting forth a coupled formulation of the PF problem (CPF), grid states can be recovered by metering fewer buses. An intuitive and easily verifiable rule pertaining to the locations of (non-)metered buses on the physical grid is shown to be a necessary and sufficient criterion for local observability in radial networks. To account for noisy smart meter readings, a coupled power system state estimation (CPSSE) problem is further devised. Both CPF and CPSSE tasks are tackled via augmented semi-definite program relaxations. The observability criterion along with the CPF and CPSSE solvers are numerically corroborated using randomly generated and actual solar and load data on the IEEE 34-bus benchmark feeder.
机译:由于仪器的限制,配电网目前受到可观察性问题的挑战。另一方面,智能电表数据从具有可再生发电和弹性需求的节点传送到公用事业运营商。本文采用计量总线的网格数据来推断基础网格状态。系统节点被划分为具有时变注入的总线(假定已计量)和具有相对固定的常规负载(未计量)的总线。利用计量公交车的可变性和常规负载的平稳性,此处的新颖思想是在连续的瞬时共同解决非线性潮流(PF)方程。通过提出PF问题(CPF)的耦合表述,可以通过计量较少的总线来恢复电网状态。与物理网格上(非)计量总线的位置有关的直观且易于验证的规则显示为径向网络中局部可观察性的必要和充分标准。为了解决嘈杂的智能电表读数问题,进一步设计了耦合电源系统状态估计(CPSSE)问题。 CPF和CPSSE任务均通过增强的半定程序放松来解决。可观测性标准以及CPF和CPSSE求解器使用IEEE 34总线基准馈线上的随机生成的和实际的太阳能和负载数据在数值上得到了证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号