首页> 外文期刊>Smart Grid, IEEE Transactions on >A Hierarchical Framework for Smart Grid Anomaly Detection Using Large-Scale Smart Meter Data
【24h】

A Hierarchical Framework for Smart Grid Anomaly Detection Using Large-Scale Smart Meter Data

机译:使用大规模智能电表数据的智能电网异常检测的分层框架

获取原文
获取原文并翻译 | 示例

摘要

Real-time monitoring and control of smart grids (SGs) is critical to the enhancement of reliability and operational efficiency of power utilities. We develop a real-time anomaly detection framework, which can be built based upon smart meter (SM) data collected at the consumers' premises. The model is designed to detect the occurrence of anomalous events and abnormal conditions at both lateral and customer levels. We propose a generative model for anomaly detection that takes into account the hierarchical structure of the network and the data collected from SMs. We also address three challenges existing in SG analytics: (1) large-scale multivariate count measurements; (2) missing points; and (3) variable selection. We present the effectiveness of our approach with numerical experiments.
机译:智能电网(SG)的实时监视和控制对于提高电力公司的可靠性和运营效率至关重要。我们开发了一个实时异常检测框架,可以基于在消费者场所收集的智能电表(SM)数据来构建该框架。该模型旨在检测横向和客户级别的异常事件和异常情况的发生。我们提出了一种用于异常检测的生成模型,该模型考虑了网络的分层结构以及从SM收集的数据。我们还解决了SG分析中存在的三个挑战:(1)大规模多变量计数测量; (2)失分; (3)变量选择。我们通过数值实验展示了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号