首页> 外文期刊>Smart Grid, IEEE Transactions on >Real-Time Load Elasticity Tracking and Pricing for Electric Vehicle Charging
【24h】

Real-Time Load Elasticity Tracking and Pricing for Electric Vehicle Charging

机译:电动汽车充电的实时负载弹性跟踪和定价

获取原文
获取原文并翻译 | 示例

摘要

While electric vehicles (EVs) are expected to provide environmental and economical benefit, judicious coordination of EV charging is necessary to prevent overloading of the distribution grid. Leveraging the smart grid infrastructure, the utility company can adjust the electricity price intelligently for individual customers to elicit desirable load curves. In this context, this paper addresses the problem of predicting the EV charging behavior of the consumers at different prices, which is a prerequisite for optimal price adjustment. The dependencies on price responsiveness among consumers are captured by a conditional random field (CRF) model. To account for temporal dynamics potentially in a strategic setting, the framework of online convex optimization is adopted to develop an efficient online algorithm for tracking the CRF parameters. The proposed model is then used as an input to a stochastic profit maximization module for real-time price setting. Numerical tests using simulated and semi-real data verify the effectiveness of the proposed approach.
机译:虽然电动汽车(EV)有望带来环境和经济利益,但为防止配电网过载,必须谨慎地协调EV充电。利用智能电网基础设施,公用事业公司可以智能地调整电价,以使各个客户获得理想的负载曲线。在这种情况下,本文提出了预测不同价格消费者的电动汽车充电行为的问题,这是进行最佳价格调整的前提。消费者之间对价格响应能力的依赖性通过条件随机字段(CRF)模型捕获。为了考虑战略环境中潜在的时间动态,采用在线凸优化框架来开发一种有效的在线算法来跟踪CRF参数。然后,将所提出的模型用作随机利润最大化模块的输入,以进行实时价格设置。使用模拟和半真实数据进行的数值测试验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号