首页> 外文期刊>Smart Grid, IEEE Transactions on >Nonparametric Regression-Based Failure Rate Model for Electric Power Equipment Using Lifecycle Data
【24h】

Nonparametric Regression-Based Failure Rate Model for Electric Power Equipment Using Lifecycle Data

机译:基于生命周期数据的基于非参数回归的电力设备故障率模型

获取原文
获取原文并翻译 | 示例

摘要

In order to analyze the fault trends more accurately, a failure rate model appropriate for general electric power equipment is established based on a nonparametric regression method, improved from stratified proportional hazards model (PHM), which can make maximum use of equipment lifecycle data as the covariates, including manufacturer, service age, location, maintainer, health index, etc. All of covariates are represented in the hierarchy process of equipment health condition, which is beneficial for processing and classifying the lifecycle data into multitype recurrent events quantitatively. Meanwhile, based on new definitions of single health cycle and time between events, recurrent inspecting events distributed with martingale process can correspond with event-specific failure function during equipment lifecycle. On this occasion, more inspecting events can be utilized in a complete cycle to predict potential risk and assess equipment health condition. Then, stratified nonparametric PHM is employed to build the multitype recurrent events-specific failure model appropriate for competing risk problem toward interval censored. Lastly, the example in terms of transformers demonstrates the modeling procedure. Results show the well asymptotic property and goodness-of-fit tested by both of graphical and analytical methods. Compared with existing failure models, such as age-based or CBF model, this improved nonparametric regression model can mine lifecycle data acquisition from asset management system, depict the failure trend accurately considering both individual and group features, and lay the foundation for health prognosis, maintenance optimization, and asset management in power grid.
机译:为了更准确地分析故障趋势,基于分层比例风险模型(PHM)改进了基于非参数回归方法的适用于一般电力设备的故障率模型,该模型可以最大程度地利用设备生命周期数据作为协变量,包括制造商,服务年龄,位置,维护者,健康指数等。所有协变量均表示在设备健康状况的层次过程中,这有利于将生命周期数据定量地处理和分类为多种类型的重复事件。同时,基于对单个健康周期和事件之间时间的新定义,通过mar过程分配的定期检查事件可以与设备生命周期中特定于事件的故障功能相对应。在这种情况下,可以在一个完整的周期中利用更多的检查事件来预测潜在风险并评估设备的健康状况。然后,采用分层的非参数式PHM来构建适用于针对区间审查的竞争风险问题的多类型重复事件特定故障模型。最后,以变压器为例的示例演示了建模过程。结果显示了通过图形和分析方法测试的良好渐近性和拟合优度。与现有的基于年龄或CBF的故障模型相比,这种改进的非参数回归模型可以挖掘从资产管理系统获取的生命周期数据,准确地考虑到个人和群体特征来描绘故障趋势,并为健康预测奠定基础,维护优化和电网资产管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号