首页> 外文期刊>Smart Grid, IEEE Transactions on >Coordinated Bidding of Ancillary Services for Vehicle-to-Grid Using Fuzzy Optimization
【24h】

Coordinated Bidding of Ancillary Services for Vehicle-to-Grid Using Fuzzy Optimization

机译:基于模糊优化的车联网辅助服务招标

获取原文
获取原文并翻译 | 示例

摘要

Electric vehicles (EVs) can be effectively integrated with the power grid through vehicle-to-grid (V2G). V2G has been proven to reduce the EV owner cost, support the power grid, and generate revenues for the EV owner. Due to regulatory and physical considerations, aggregators are necessary for EVs to participate in electricity markets. The aggregator combines the capacities of many EVs and bids their aggregated capacity into electricity markets. In this paper, an optimal bidding of ancillary services coordinated across different markets, namely regulation and spinning reserves, is proposed. This coordinated bidding considers electricity market uncertainties using fuzzy optimization. The electricity market parameters are forecasted using autoregressive integrated moving average (ARIMA) models. The fuzzy set theory is used to model the uncertainties in the forecasted data of the electricity market, such as ancillary service prices and their deployment signals. Simulations are performed on a hypothetical group of 10000 EVs in the electric reliability council of Texas electricity markets. The results show the benefit of the proposed fuzzy algorithm compared with previously proposed deterministic algorithms that do not consider market uncertainties.
机译:电动汽车(EV)可以通过车对网(V2G)与电网有效集成。 V2G已被证明可以降低EV所有者的成本,支持电网并为EV所有者创造收入。出于法规和实际考虑,电动汽车要参与电力市场,必须使用聚合器。聚合器结合了许多电动汽车的容量,并将它们的总容量竞标到电力市场。在本文中,提出了在不同市场协调的辅助服务的最优竞标,即监管和旋转备用。该协调招标使用模糊优化考虑电力市场的不确定性。电力市场参数使用自回归综合移动平均线(ARIMA)模型进行预测。模糊集理论用于对电力市场预测数据中的不确定性建模,例如辅助服务价格及其部署信号。在德克萨斯州电力市场的电力可靠性委员会中,对假设的10000辆电动汽车进行了仿真。结果表明,与先前提出的不考虑市场不确定性的确定性算法相比,所提出的模糊算法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号