首页> 外文期刊>Smart Grid, IEEE Transactions on >GPU-Accelerated Batch-ACPF Solution for N-1 Static Security Analysis
【24h】

GPU-Accelerated Batch-ACPF Solution for N-1 Static Security Analysis

机译:用于N-1静态安全分析的GPU加速批处理ACPF解决方案

获取原文
获取原文并翻译 | 示例

摘要

Graphics processing unit (GPU) has been applied successfully in many scientific computing realms due to its superior performances on float-pointing calculation and memory bandwidth, and has great potential in power system applications. The N-1 static security analysis (SSA) appears to be a candidate application in which massive alternating current power flow (ACPF) problems need to be solved. However, when applying existing GPU-accelerated algorithms to solve N-1 SSA problem, the degree of parallelism is limited because existing researches have been devoted to accelerating the solution of a single ACPF. This paper therefore proposes a GPU-accelerated solution that creates an additional layer of parallelism among batch ACPFs and consequently achieves a much higher level of overall parallelism. First, this paper establishes two basic principles for determining well-designed GPU algorithms, through which the limitation of GPU-accelerated sequential-ACPF solution is demonstrated. Next, being the first of its kind, this paper proposes a novel GPU-accelerated batch-QR solver, which packages massive number of QR tasks to formulate a new larger-scale problem and then achieves higher level of parallelism and better coalesced memory accesses. To further improve the efficiency of solving SSA, a GPU-accelerated batch-Jacobian-Matrix generating and contingency screening is developed and carefully optimized. Lastly, the complete process of the proposed GPU-accelerated batch-ACPF solution for SSA is presented. Case studies on an 8503-bus system show dramatic computation time reduction is achieved compared with all reported existing GPU-accelerated methods. In comparison to UMFPACK-library-based single-CPU counterpart using Intel Xeon E5-2620, the proposed GPU-accelerated SSA framework using NVIDIA K20C achieves up to 57.6 times speedup. It can even achieve four times speedup when compared to one of the fastest multi-core CPU parallel computing solution using KLU library. The proposed batch-solving method is practically very promising and lays a critical foundation for many other power system applications that need to deal with massive subtasks, such as Monte-Carlo simulation and probabilistic power flow.
机译:图形处理单元(GPU)在浮点计算和内存带宽方面的卓越性能已成功应用于许多科学计算领域,并在电力系统应用中具有巨大潜力。 N-1静态安全分析(SSA)似乎是候选应用程序,在该应用程序中需要解决大量交流电潮流(ACPF)问题。但是,当应用现有的GPU加速算法来解决N-1 SSA问题时,并行度是有限的,因为现有的研究致力于加速单个ACPF的解决方案。因此,本文提出了一种GPU加速解决方案,该解决方案在批处理ACPF之间创建了额外的并行度层,因此实现了更高水平的整体并行度。首先,本文确立了确定设计良好的GPU算法的两个基本原则,从而证明了GPU加速的顺序ACPF解决方案的局限性。接下来,作为同类产品中的第一个,本文提出了一种新型的GPU加速批处理QR解算器,该解决方案将大量QR任务打包成一个新的大规模问题,然后实现更高级别的并行性和更好的合并内存访问。为了进一步提高解决SSA的效率,开发并仔细优化了GPU加速的批处理Jacobian矩阵生成和意外事件筛选。最后,介绍了所提出的用于SSA的GPU加速批处理ACPF解决方案的完整过程。在8503总线系统上的案例研究表明,与所有报告的现有GPU加速方法相比,该方法可显着减少计算时间。与使用Intel Xeon E5-2620的基于UMFPACK库的单CPU相比,拟议的使用NVIDIA K20C的GPU加速SSA框架的速度提高了57.6倍。与使用KLU库的最快的多核CPU并行计算解决方案之一相比,它甚至可以实现四倍的加速。提出的批处理方法在实践中非常有前途,并为许多其他需要处理大量子任务的电力系统应用(例如蒙特卡罗模拟和概率潮流)奠定了重要基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号