首页> 外文期刊>ESAIM >NEW REGULARITY RESULTS AND FINITE ELEMENT ERROR ESTIMATES FOR A CLASS OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS
【24h】

NEW REGULARITY RESULTS AND FINITE ELEMENT ERROR ESTIMATES FOR A CLASS OF PARABOLIC OPTIMAL CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS

机译:具有点亮状态约束的一类抛物线最优控制问题的新规则结果和有限元错误估计

获取原文
获取原文并翻译 | 示例

摘要

We study first-order necessary optimality conditions and finite element error estimates for a class of distributed parabolic optimal control problems with pointwise state constraints. It is demonstrated that, if the bound in the state constraint and the differential operator in the governing PDE fulfil a certain compatibility assumption, then locally optimal controls satisfy a stationarity system that allows to significantly improve known regularity results for adjoint states and Lagrange multipliers in the parabolic setting. In contrast to classical approaches to first-order necessary optimality conditions for state-constrained problems, the main arguments of our analysis require neither a Slater point, nor uniform control constraints, nor differentiability of the objective function, nor a restriction of the spatial dimension. As an application of the established improved regularity properties, we derive new finite element error estimates for the dG(0) - cG(1)-discretization of a purely state-constrained linear-quadratic optimal control problem governed by the heat equation. The paper concludes with numerical experiments that confirm our theoretical findings.
机译:我们研究一阶必要的最优性条件和有限元错误估计,对于尖状态约束,对一类分布式抛物线最优控制问题进行了一类。据证明,如果在管理PDE中的状态约束和差分运算符中的绑定实现某种兼容性假设,则局部最佳控制满足具有实质性系统,该系统允许显着改善伴随状态和拉格朗日乘法器的已知规则性结果抛物线设置。与典型的一阶必要的最优性条件对状态受约束问题的方法相比,我们的分析的主要参数既不需要均匀的控制约束,也不需要均匀的控制约束,也不是目标函数的可差,也不是空间尺寸的限制。作为建立的改进规律性的应用,我们推出了DG(0) - CG(1)的新的有限元误差估计 - 由热方程管辖的纯粹状态约束的线性二次最佳控制问题。本文得出结论,以证实我们的理论发现的数值实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号