首页> 外文期刊>Simulation >Multi-step wear evolution simulation method for the prediction of rail wheel wear and vehicle dynamic performance
【24h】

Multi-step wear evolution simulation method for the prediction of rail wheel wear and vehicle dynamic performance

机译:预测车轮磨损和车辆动态性能的多步磨损演化仿真方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a complete model to estimate the effects of wheel wear on the dynamic behavior and ride comfort of a railway vehicle. A co-simulation of the vehicle dynamics modeled in ADAMS VI-Rail and wear evolution modeled in MATLAB is performed in a loop. The outputs from the vehicle dynamics simulation are used to compute the wear evolution, which in turn affects the vehicle dynamics. The local contact parameters, such as normal contact force, tangential stresses and slip, etc., and wear distribution for each cell of the contact surface are estimated with the help of Kalker's simplified theory of rolling contact and Archard's wear model, respectively. The wear distribution and smoothening of the wheel profile are obtained for a short travel distance and are then scaled up for larger travel distance. The worn wheel profile is updated in the vehicle dynamics model after every 10,000 km of travel for further dynamic analysis and this process is repeated until either the critical dynamic performance or wheel wear limits are reached. Several new results emerge by considering both acceleration and braking on a tangent track with sinusoidal irregularities. Critical speed appears to increase initially and then decrease quickly, whereas worn wheels give better ride comfort in both lateral and vertical directions as compared to new wheels. According to the results in this work, wheels may be recommended for re-profiling or replacement much before the critical wear depth recommended in maintenance guidelines is reached.
机译:本文提出了一个完整的模型来估算车轮磨损对铁路车辆动力性能和乘坐舒适性的影响。循环执行ADAMS VI-Rail和MATLAB建模的车辆动力学的协同仿真。车辆动力学模拟的输出用于计算磨损演变,进而影响车辆动力学。分别借助Kalker简化的滚动接触理论和Archard磨损模型估算局部接触参数,例如法向接触力,切向应力和滑移等,以及接触表面每个单元的磨损分布。在较短的行驶距离下可获得车轮的磨损分布和平滑度,然后在较大的行驶距离上按比例放大。每行驶10,000 km后,就会在车辆动力学模型中更新磨损的车轮轮廓,以进行进一步的动态分析,并重复此过程,直到达到关键的动态性能或车轮磨损极限为止。通过考虑具有正弦不规则性的切线轨迹上的加速和制动,出现了一些新的结果。临界速度似乎在开始时先增加然后迅速降低,而与新车轮相比,磨损的车轮在横向和垂直方向上都具有更好的乘坐舒适性。根据这项工作的结果,在达到维护指南中建议的临界磨损深度之前,可能建议对车轮进行重新轮廓或更换。

著录项

  • 来源
    《Simulation》 |2019年第5期|441-459|共19页
  • 作者单位

    Indian Inst Technol, Dept Mech Engn, Dynam & Control Lab, Ctr Railway Res CRR IIT Kharagpur Syst, Kharagpur 721302, W Bengal, India;

    Indian Inst Technol, Dept Mech Engn, Dynam & Control Lab, Ctr Railway Res CRR IIT Kharagpur Syst, Kharagpur 721302, W Bengal, India;

    Indian Inst Technol, Dept Mech Engn, Dynam & Control Lab, Ctr Railway Res CRR IIT Kharagpur Syst, Kharagpur 721302, W Bengal, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wheel-rail contact; wear model; railway vehicle dynamics; co-simulation; maintenance scheduling;

    机译:轮轨接触;磨损模型;轨道车辆动力学;协同仿真;维修计划;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号