首页> 外文期刊>Signal processing >Maximum likelihood, ESPRIT, and periodogram frequency estimation of radar signals in K-distributed clutter
【24h】

Maximum likelihood, ESPRIT, and periodogram frequency estimation of radar signals in K-distributed clutter

机译:K分布杂波中雷达信号的最大似然,ESPRIT和周期图频率估计

获取原文
获取原文并翻译 | 示例

摘要

The contribution of this paper is the derivation of the joint maximum likelihood (ML) estimator of complex amplitude and Doppler frequency of a radar target signal embedded in correlated non-Gaussian clutter modelled as a compound- Gaussian process. The estimation accuracy of the ML frequency estimator is investigated and compared with that of the well-known periodogram and ESPRIT estimators under various operational scenarios. The hybrid Cramer-Rao lower bound (HCRLB) and a large sample closed-form expression for the mean square estimation error are also derived for Swerling I target signal. Finally, numerical results obtained by Monte Carlo simulation are checked by means of measured sea clutter data for the general case of fluctuating target amplitude.
机译:本文的贡献是推导了以复合高斯过程建模的,嵌入在相关非高斯杂波中的雷达目标信号的复振幅和多普勒频率的联合最大似然(ML)估计器的推导。研究了ML频率估计器的估计精度,并将其与各种操作场景下的著名周期图和ESPRIT估计器进行了比较。还针对Swerling I目标信号推导了混合式Cramer-Rao下限(HCRLB)和均方根估计误差的大样本闭式表达式。最后,通过测量的海浪杂波数据检查了由蒙特卡洛模拟获得的数值结果,这是目标幅度波动的一般情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号