首页> 外文期刊>Signal processing >Image fusion based on median filters and SOFM neural networks : a three-step scheme
【24h】

Image fusion based on median filters and SOFM neural networks : a three-step scheme

机译:基于中值滤波器和SOFM神经网络的图像融合:三步方案

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).
机译:通过结合中值滤波和自组织特征图(SOFM)神经网络,提出了一种新的图像数据融合方案。该方案包括三个步骤:(1)图像的预处理,其中加权中值滤波去除破坏图像的部分噪声分量;(2)使用自组织特征图神经网络为每个图像进行像素聚类;以及(3 )融合步骤(2)中获得的图像,从而抑制了残留噪声分量,从而进一步提高了图像质量。事实证明,这样的三步组合提供了令人印象深刻的效果和性能改进,这一点已通过涉及三个图像传感器(每个图像传感器具有不同的噪声结构)的仿真得到了证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号