首页> 外文期刊>Signal processing >A neuro-evolutionary framework for Bayesian blind equalization in digital communications
【24h】

A neuro-evolutionary framework for Bayesian blind equalization in digital communications

机译:用于数字通信中的贝叶斯盲均衡的神经进化框架

获取原文
获取原文并翻译 | 示例

摘要

The application of the Bayesian formulation to the joint data and channel estimation in digital communication is not feasible in practice because the computational complexity and memory requirements of the estimation process grow exponentially with time. However, the evolution with time of the channel conditional density model suggests the application of pruning, selection, crossover and other concepts from evolutionary computation and neural networks, which drastically reduce the complexity of the Bayesian equalizer without severe performance degradation. Although some problems of convergence to wrong channel estimates may arise, Bayesian equalizers can detect those situations by estimating, during operation, the overall symbol error probability. If suboptimal convergence is detected, the estimation process is automatically re-started.
机译:贝叶斯公式在数字通信中的联合数据和信道估计中的应用在实践中是不可行的,因为估计过程的计算复杂性和存储要求随时间呈指数增长。但是,信道条件密度模型随时间的演变表明,应采用进化计算和神经网络中的修剪,选择,交叉和其他概念,这将大大降低贝叶斯均衡器的复杂性而不会导致性能严重下降。尽管可能会出现收敛于错误信道估计的一些问题,但是贝叶斯均衡器可以通过在操作期间估计总体符号错误概率来检测那些情况。如果检测到次优收敛,估计过程将自动重新开始。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号