首页> 外文期刊>Signal processing >Computational load reduction of fast convergence algorithms for multichannel active noise control
【24h】

Computational load reduction of fast convergence algorithms for multichannel active noise control

机译:用于多通道有源噪声控制的快速收敛算法的计算负荷降低

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the computational load of fast convergence recursive least-squares algorithms for multichannel active noise control (ANC) is reduced by the use of an inverse model of the acoustic plant between the actuators and the error sensors. The complexity reduction applies to both classical recursive least-squares algorithms or their fast time series or order-recursive implementations. To develop the new algorithm, a comparison of several control structures (filtered-x, adjoint, filtered-ε, inverse filtered-x, delay-compensated) available for the training of adaptive FIR filters in ANC is performed, based on three main factors that affect the convergence speed of the learning algorithms: correlation of input signals and acoustic plant, delay between the filters and the error signals, and filtering of the error signals. Stochastic gradient descent algorithms and recursive least-squares algorithms are combined with the different structures, and the resulting algorithms are compared based on the three factors. Several of the resulting algorithms have never been published, but of those new algorithms only one algorithm has the potential for optimal convergence speed, based on the three factors. Not only can this algorithm provide fast convergence, but for multichannel systems it also provides a large reduction of the computational load compared to the previously published algorithm with the fastest convergence. Therefore it is introduced in detail in the paper, and simulation results are presented to validate the convergence behavior of the new proposed algorithm.
机译:在本文中,通过在执行器和误差传感器之间使用声学工厂的逆模型,减少了用于多通道主动噪声控制(ANC)的快速收敛递归最小二乘算法的计算量。降低复杂度适用于经典递归最小二乘算法或其快速时间序列或阶递归实现。为了开发新算法,基于三个主要因素,对可用于ANC中自适应FIR滤波器训练的几种控制结构(滤波x,伴随,滤波ε,逆滤波x,延迟补偿)进行了比较。影响学习算法收敛速度的因素包括:输入信号与声学设备的相关性,滤波器与误差信号之间的延迟以及误差信号的滤波。将随机梯度下降算法和递归最小二乘算法与不同的结构相结合,并基于这三个因素对所得算法进行比较。几种最终的算法从未发布过,但是在这些新算法中,只有基于三种因素的一种算法才有可能达到最佳收敛速度。与先前发布的具有最快收敛性的算法相比,该算法不仅可以提供快速收敛性,而且对于多通道系统,还可以大大减少计算量。因此,本文将对其进行详细介绍,并给出仿真结果以验证新算法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号