首页> 外文期刊>Signal processing >A novel adaptive learning rate sequential blind source separation algorithm
【24h】

A novel adaptive learning rate sequential blind source separation algorithm

机译:一种新的自适应学习速率序贯盲源分离算法

获取原文
获取原文并翻译 | 示例

摘要

A new member of the family of natural gradient algorithms for on-line blind separation of independent sources is proposed. The method is based upon an adaptive step-size which varies in sympathy with the dynamics of the input signals and properties of the de-mixing matrix, and is robust to the perturbations in the initial value of the learning rate parameter. As a result, the convergence speed is significantly improved, especially in non-stationary mixing environments. Simulations support the expected improvement in convergence speed of the approach.
机译:提出了一种自然梯度算法家族的新成员,用于独立来源的在线盲分离。该方法基于自适应步长,该步长随输入信号的动态和去混合矩阵的特性而变化,并且对于学习速率参数的初始值的扰动具有鲁棒性。结果,收敛速度显着提高,尤其是在非平稳混合环境中。仿真支持了该方法收敛速度的预期提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号