首页> 外文期刊>Signal processing >Automatic digital modulation recognition using artificial neural network and genetic algorithm
【24h】

Automatic digital modulation recognition using artificial neural network and genetic algorithm

机译:使用人工神经网络和遗传算法的自动数字调制识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic recognition of digital modulation signals has seen increasing demand nowadays. The use of artificial neural networks for this purpose has been popular since the late 1990s. Here, we include a variety of modulation types for recognition, e.g. QAM16, V29, V32, QAM64 through the addition of a newly proposed statistical feature set. Two training algorithms for multi-layer perceptron (MLP) recogniser, namely Backpropagation with Momentum and Adaptive Learning Rate is investigated, while resilient backpropagation (RPROP) is proposed for this problem, are employed in this work. In particular, the RPROP algorithm is applied for the first time in this area. In conjunction with these algorithms, we use a separate data set as validation set during training cycle to improve generalisation. Genetic algorithm (GA) based feature selection is used to select the best feature subset from the combined statistical and spectral feature set. RPROP MLP recogniser achieves about 99% recognition performance on most SNR values with only six features selected using GA.
机译:如今,自动识别数字调制信号的需求不断增长。自1990年代末以来,为此目的使用人工神经网络已很普遍。在此,我们包括多种用于识别的调制类型,例如QAM16,V29,V32,QAM64通过添加新提议的统计功能集。本文研究了两种针对多层感知器(MLP)识别器的训练算法,即具有动量的反向传播和自适应学习率,同时针对该问题提出了弹性反向传播(RPROP)。特别是,RPROP算法在该区域首次应用。结合这些算法,我们在训练周期中使用单独的数据集作为验证集,以提高通用性。基于遗传算法(GA)的特征选择用于从组合的统计和光谱特征集中选择最佳特征子集。 RPROP MLP识别器仅使用GA选择了六个功能就可以在大多数SNR值上实现约99%的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号