首页> 外文期刊>Signal processing >Maximum likelihood parameter estimation under impulsive conditions, a sub-Gaussian signal approach
【24h】

Maximum likelihood parameter estimation under impulsive conditions, a sub-Gaussian signal approach

机译:脉冲条件下的最大似然参数估计,一种高斯信号方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present an alternative to the Gaussian and Cauchy distributions for modeling stochastic signals. The proposed model has the same impulsiveness as the Cauchy density, but it is derived as a sub-Gaussian process, i.e., a variance mixture of Gaussian random variables. We proceed to use the derived model in the problem of signal parameter estimation through the use of multisensor data. Both the data and noise are assumed to be stochastic. The main problem of interest is the estimation of the DOA and statistics of the signal. A maximum likelihood algorithm is presented for the solution of this problem, and a pseudo-maximum-likelihood separable solution approach is derived. Finally, simulations are presented to demonstrate the robustness of the proposed algorithm.
机译:在本文中,我们提出了一种替代高斯和柯西分布的方法来建模随机信号。所提出的模型具有与柯西密度相同的冲量,但是它是作为一个高斯过程分解的,即高斯随机变量的方差混合。通过使用多传感器数据,我们继续在信号参数估计问题中使用派生模型。假定数据和噪声都是随机的。感兴趣的主要问题是DOA的估计和信号统计。提出了一种最大似然算法来解决该问题,并推导了伪最大似然可分离方法。最后,仿真结果证明了所提算法的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号