首页> 外文期刊>Signal processing >Bilinear algorithms for discrete cosine transforms of prime lengths
【24h】

Bilinear algorithms for discrete cosine transforms of prime lengths

机译:素数长度的离散余弦变换的双线性算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a strategy to design bilinear discrete cosine transform (DCT) algorithms of prime lengths. We show that by using multiplicative groups of integers, one can identify and arrange the computation as a pair of convolutions. When the DCT length p is such that (p - 1)/2 is odd, the computation uses two (p - 1)/2 point cyclic convolutions. When (p -1)/2 = 2{sup}mq with m>0 and q odd, the computation requires one (p - 1)/2 point cyclic convolution and a combination of a q point cyclic convolution and a 2{sup}m point Hankel product. Using bilinear algorithms for convolutions and Hankel products, one gets a bilinear DCT algorithm. We also show that the additions required beyond the convolutions can be minimized by a small modification to the convolution algorithms. This minimization exploits the fact that efficient bilinear convolution algorithms are almost always based on Chinese Remainder Theorem.
机译:本文提出了一种设计素数长度的双线性离散余弦变换(DCT)算法的策略。我们表明,通过使用整数的乘法组,一个人可以识别并安排计算为一对卷积。当DCT长度p使得(p-1)/ 2为奇数时,计算使用两个(p-1)/ 2点循环卷积。当(p -1)/ 2 = 2 {sup} mq且m> 0且q奇数时,计算需要一个(p-1)/ 2点循环卷积以及aq点循环卷积和2 {sup}的组合米点汉高产品。使用卷积和汉克积的双线性算法,可以得到双线性DCT算法。我们还表明,通过对卷积算法进行较小的修改,可以将卷积之外所需的加法最小化。这种最小化利用了这样一个事实,即有效的双线性卷积算法几乎总是基于中国余数定理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号