首页> 外文期刊>Signal processing >Speech spectral modeling and enhancement based on autoregressive conditional heteroscedasticity models
【24h】

Speech spectral modeling and enhancement based on autoregressive conditional heteroscedasticity models

机译:基于自回归条件异方差模型的语音频谱建模与增强

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop and evaluate speech enhancement algorithms, which are based on supergaussian generalized autoregressive conditional heteroscedasticity (GARCH) models in the short-time Fourier transform (STFT) domain. We consider three different statistical models, two fidelity criteria, and two approaches for the estimation of the variances of the STFT coefficients. The statistical model is either Gaussian, Gamma or Laplacian; the fidelity criteria include minimum mean-squared error (MMSE) of the STFT coefficients and MMSE of the log-spectral amplitude (LSA); the spectral variance is estimated based on either the proposed GARCH models or the decision-directed method of Ephraim and Malah. We show that estimating the variance by the GARCH modeling method yields lower log-spectral distortion and higher perceptual evaluation of speech quality scores (PESQ, ITU-T P.862) than by using the decision-directed method, whether the presumed statistical model is Gaussian, Gamma or Laplacian, and whether the fidelity criterion is MMSE of the STFT coefficients or MMSE of the LSA. further-more while a gaussian model is inferior to the supergaussian models when USING the decision-directed method, the Gaussian model is superior when using the garch modeling method. (c) 2005 Published by Elsevier B.V.
机译:在本文中,我们开发和评估语音增强算法,该算法基于短时傅立叶变换(STFT)域中的超高斯广义自回归条件异方差(GARCH)模型。我们考虑了三种不同的统计模型,两种保真度标准以及两种估算STFT系数方差的方法。统计模型是高斯模型,伽马模型或拉普拉斯模型;保真度标准包括STFT系数的最小均方误差(MMSE)和对数频谱幅度(LSA)的MMSE;根据提议的GARCH模型或Ephraim和Malah的决策指导方法估算频谱方差。我们表明,与是否使用决策指导方法相比,使用GARCH建模方法估计方差比使用决策指导方法产生的对数频谱失真更低,并且语音质量得分(PESQ,ITU-T P.862)的感知评估更高。高斯,伽马或拉普拉斯算术,以及保真度标准是STFT系数的MMSE还是LSA的MMSE。此外,当使用决策指导方法时,高斯模型要比超高斯模型逊色,而使用garch建模方法时,高斯模型则更好。 (c)2005年由Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号