首页> 外文期刊>Signal processing >Deterministic Asymptotic Cramer-rao Bound For The Multidimensional Harmonic Model
【24h】

Deterministic Asymptotic Cramer-rao Bound For The Multidimensional Harmonic Model

机译:多维调和模型的确定性渐近Cramer-rao界

获取原文
获取原文并翻译 | 示例

摘要

The harmonic model sampled on a P-dimensional grid contaminated by an additive white Gaussian noise has attracted considerable attention with a variety of applications. This model has a natural interpretation in a P-order tensorial framework and an important question is to evaluate the theoretical lowest variance on the model parameter (angular-frequency, real amplitude and initial phase) estimation. A standard Mathematical tool to tackle this question is the Cramer-Rao bound (CRB) which is a lower bound on the variance of an unbiased estimator, based on Fisher information. So, the aim of this work is to derive and analyze closed-form expressions of the deterministic asymptotic CRB associated with the M-order harmonic model of dimension P with P>1. In particular, we analyze this bound with respect to the variation of parameter P.
机译:在加性白高斯噪声污染的P维网格上采样的谐波模型在各种应用中引起了相当大的关注。该模型在P阶张量框架中具有自然的解释,一个重要的问题是评估模型参数(角频率,实际振幅和初始相位)估计的理论最低方差。用于解决此问题的标准数学工具是Cramer-Rao边界(CRB),它是基于Fisher信息的无偏估计量方差的下限。因此,这项工作的目的是推导和分析与P> 1的维P的M阶谐波模型相关的确定性渐近CRB的闭式表达式。特别是,我们针对参数P的变化分析了这一界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号