首页> 外文期刊>Signal processing >Adapted Generalized Lifting Schemes For Scalable Lossless Image Coding
【24h】

Adapted Generalized Lifting Schemes For Scalable Lossless Image Coding

机译:适用于可伸缩无损图像编码的广义提升方案

获取原文
获取原文并翻译 | 示例

摘要

Still image coding occasionally uses linear predictive coding together with multi-resolution decompositions, as may be found in several papers. Those related approaches do not take into account all the information available at the decoder in the prediction stage. In this paper, we introduce an adapted generalized lifting scheme in which the predictor is built upon two filters, leading to taking advantage of all the available information. With this structure included in a multi-resolution decomposition framework, we study two kinds of adaptation based on least-squares estimation, according to different assumptions, which are either a global or a local second order stationarity of the image. The efficiency in lossless coding of these decompositions is shown on synthetic images and their performances are compared with those of well-known codecs (S + P, JPEG-LS, JPEG2000, CALIC) on actual images. Four images' families are distinguished: natural, MRI medical, satellite and textures associated with fingerprints. On natural and medical images, the performances of our codecs do not exceed those of classical codecs. Now for satellite images and textures, they present a slightly noticeable (about 0.05-0.08 bpp) coding gain compared to the others that permit a progressive coding in resolution, but with a greater coding time.
机译:静态图像编码有时会使用线性预测编码以及多分辨率分解,这在几篇论文中都可以找到。这些相关方法未考虑预测阶段在解码器处可用的所有信息。在本文中,我们介绍了一种自适应的广义提升方案,其中,预测变量基于两个过滤器,从而利用了所有可用信息。通过将这种结构包含在多分辨率分解框架中,我们根据不同的假设,研究了基于最小二乘估计的两种适应性,即图像的全局或局部二阶平稳性。在合成图像上显示了这些分解的无损编码效率,并将其性能与实际图像上的知名编解码器(S + P,JPEG-LS,JPEG2000,CALIC)进行了比较。区分了四个图像家族:自然图像,MRI医学图像,卫星图像以及与指纹相关的纹理。在自然和医学图像上,我们的编解码器的性能不会超过经典编解码器的性能。现在,对于卫星图像和纹理,与其他允许分辨率进行渐进式编码但具有更长编码时间的图像相比,它们呈现出稍显着的(约0.05-0.08 bpp)编码增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号