首页> 外文期刊>Signal processing >A study of HMM-based bandwidth extension of speech signals
【24h】

A study of HMM-based bandwidth extension of speech signals

机译:基于HMM的语音信号带宽扩展研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate a representative statistical method for artificial bandwidth extension: the hidden Markov model (HMM) based method. In particular, we are interested in objectively quantifying its performance using both static and dynamic measures. The Gaussian mixture model (GMM) based method is presented as a reference method for the performance test under various HMM configurations. We also reasonably claim that a general approach using Baum-Welch re-estimation algorithm performs better than the existing training algorithm suggested by Jax. Accordingly, it is used as the basic algorithm for the training of HMM model.rnTest results show that the static performance of HMM-based method depends only on the total number of Gaussian components of HMM model, while its dynamic performance depends dominantly on the number of states of the model. More specifically, it is also observed that the GMM-based method is quite comparable with the HMM-based one in static performance, but, in dynamic performance, the latter outperforms the former even with higher computational complexities.
机译:在本文中,我们研究了一种人工带宽扩展的代表性统计方法:基于隐马尔可夫模型(HMM)的方法。特别是,我们对使用静态和动态指标客观地量化其性能感兴趣。提出了基于高斯混合模型(GMM)的方法,作为在各种HMM配置下进行性能测试的参考方法。我们还合理地声称,使用Baum-Welch重估计算法的一般方法比Jax建议的现有训练算法具有更好的性能。测试结果表明,基于HMM的方法的静态性能仅取决于HMM模型的高斯分量总数,而其动态性能则主要取决于数量。模型的状态。更具体地,还观察到基于GMM的方法在静态性能上与基于HMM的方法相当,但是在动态性能上,即使具有较高的计算复杂度,后者也要优于前者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号