首页> 外文期刊>Signal processing >Adjacent-block based statistical detection method for self-embedding watermarking techniques
【24h】

Adjacent-block based statistical detection method for self-embedding watermarking techniques

机译:基于邻块的自嵌入水印技术统计检测方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an adjacent-block based statistical detection method for self-embedding watermarking techniques to accurately identify the tampered blocks, and gives an analytical analysis of the tamper detection performance. In the proposed statistical detection method, we take all adjacent blocks of the test block and its mapping block into account and then utilize a statistic-based rule to verify the validity of image blocks. Analytical analysis and experimental results demonstrate that the proposed statistical detection method can identify the tampered blocks with a probability more than 98% even the tampered area is up to 70% of the host image. In addition, the proposed method outperforms conventional self-embedding fragile watermarking algorithms in tamper detection under collage attack and content-tampering attack.
机译:本文提出了一种基于块的统计检测方法,用于自嵌入水印技术,以准确地识别出被篡改的块,并对篡改检测性能进行了分析。在提出的统计检测方法中,我们考虑了测试块及其映射块的所有相邻块,然后利用基于统计的规则来验证图像块的有效性。分析分析和实验结果表明,所提出的统计检测方法即使在被篡改区域达到主机图像的70%时,也能以超过98%的概率识别出被篡改的块。此外,在拼贴攻击和内容篡改攻击下的篡改检测中,该方法优于传统的自嵌入脆弱水印算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号