首页> 外文期刊>Signal processing >Optimal And Self-tuning Weighted Measurement Fusion Wiener Filter For The Multisensor Multichannel Arma Signals
【24h】

Optimal And Self-tuning Weighted Measurement Fusion Wiener Filter For The Multisensor Multichannel Arma Signals

机译:多传感器多通道Arma信号的最优自校正加权测量融合维纳滤波器

获取原文
获取原文并翻译 | 示例

摘要

For the multisensor multichannel autoregressive moving average (ARMA) signals with white measurement noises, using the modern time series analysis method, based on the ARMA innovation models, white noise estimators, and measurement predictors, an optimal weighted measurement fusion Wiener filter is presented by the weighted least squares (WLS) method. It can handle the fused filtering, smoothing and prediction problems in a unified framework. When the noise variances and model parameters are unknown, based on the on-line identification of the local and fused ARMA innovation models, a self-tuning weighted measurement fusion Wiener filter is presented. By the dynamic error system analysis (DESA) method, it is rigorously proved that the self-tuning fuser converges to the optimal fuser in a realization, so that it has the asymptotic optimality. Compared with the globally optimal centralized fusion time-varying Kalman filter, the proposed optimal and self-tuning Wiener fusers have the asymptotic global optimality, whose accuracies are higher than these of the optimal and self-tuning distributed Wiener fusers and local Wiener filters, respectively. A simulation example shows their effectiveness.
机译:对于具有白色测量噪声的多传感器多通道自回归移动平均(ARMA)信号,使用现代时间序列分析方法,基于ARMA创新模型,白噪声估计器和测量预测器,由传感器提供最优加权测量融合维纳滤波器。加权最小二乘(WLS)方法。它可以在一个统一的框架中处理融合的滤波,平滑和预测问题。当噪声方差和模型参数未知时,基于对本地和融合ARMA创新模型的在线识别,提出了一种自调谐加权测量融合维纳滤波器。通过动态误差系统分析(DESA)方法,严格证明了在实现中自整定热凝器收敛到最优热凝器,从而具有渐近最优性。与全局最优集中式融合时变卡尔曼滤波器相比,所提出的最优和自调整Wiener融合器具有渐近全局最优性,其精度分别高于最优和自调整分布式Wiener融合器和局部Wiener滤波器。 。一个仿真例子说明了它们的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号