首页> 外文期刊>Signal processing >Nonlocal video denoising, simplification and inpainting using discrete regularization on graphs
【24h】

Nonlocal video denoising, simplification and inpainting using discrete regularization on graphs

机译:在图上使用离散正则化进行非本地视频降噪,简化和修复

获取原文
获取原文并翻译 | 示例

摘要

We present nonlocal algorithms for video denoising, simplification and inpainting based on a generic framework of discrete regularization on graphs. We express video denoising, simplification and inpainting problems using the same variational formulation. The main advantage of this framework is the unification of local and nonlocal approaches for these processing procedures. We take advantage of temporal and spatial redundancies in order to produce high quality results. In this paper, we consider a video sequence as a volume rather than a sequence of frames, and employ algorithms that do not require any motion estimation. For video inpainting, we unify geometric- and texture-synthesis-based approaches. To reduce the computational effort, we propose an optimized method that is faster than the nonlocal approach, while producing equally appealing results.
机译:我们基于图上离散正则化的通用框架,提出了用于视频降噪,简化和修复的非局部算法。我们使用相同的变体形式表达视频降噪,简化和修复问题。该框架的主要优点是这些处理程序的本地方法和非本地方法的统一。我们利用时间和空间冗余来产生高质量的结果。在本文中,我们将视频序列视为一个体积而不是帧序列,并采用不需要任何运动估计的算法。对于视频修复,我们统一了基于几何和纹理合成的方法。为了减少计算量,我们提出了一种优化方法,该方法比非局部方法要快,同时产生同样吸引人的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号