首页> 外文期刊>Signal processing >Parameter estimation for exponential sums by approximate Prony method
【24h】

Parameter estimation for exponential sums by approximate Prony method

机译:指数Prony法估计指数和的参数。

获取原文
获取原文并翻译 | 示例

摘要

The recovery of signal parameters from noisy sampled data is a fundamental problem in digital signal processing. In this paper, we consider the following spectral analysis problem." Let/be a real-valued sum of complex exponentials. Determine all parameters of f, i.e., all different frequencies, all coefficients, and the number of exponentials from finitely many equispaced sampled data of f. This is a nonlinear inverse problem. In this paper, we present new results on an approximate Prony method (APM) which is based on [1]. In contrast to [1], we apply matrix perturbation theory such that we can describe the properties and the numerical behavior of the APM in detail. The number of sampled data acts as regularization parameter. The first part of APM estimates the frequencies and the second part solves an overdetermined linear Vandermonde-type system in a stable way. We compare the first part of APM also with the known ESPRIT method. The second part is related to the nonequispaced fast Fourier transform (NFFT). Numerical experiments show the performance of our method.
机译:从噪声采样数据中恢复信号参数是数字信号处理中的一个基本问题。在本文中,我们考虑以下频谱分析问题:“让/为复指数的实值和。确定f的所有参数,即,从有限多个等距采样中确定所有频率,所有系数和指数数量f的数据,这是一个非线性反问题,在本文中,我们基于[1]提出了近似Prony方法(APM)的新结果,与[1]相比,我们应用了矩阵摄动理论,使得可以详细描述APM的特性和数值行为,采样数据的数量作为正则化参数,APM的第一部分估计频率,第二部分以稳定的方式解决超定线性范德蒙德型系统。将APM的第一部分与已知的ESPRIT方法进行比较,第二部分与非等距快速傅里叶变换(NFFT)有关,数值实验证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号