首页> 外文期刊>Signal processing >Asymmetric propagation based batch mode active learning for image retrieval
【24h】

Asymmetric propagation based batch mode active learning for image retrieval

机译:基于非对称传播的批处理模式主动学习的图像检索

获取原文
获取原文并翻译 | 示例

摘要

Relevance feedback is an effective approach to improve the performance of image retrieval by leveraging the labeling of human. In order to alleviate the burden of labeling, active learning method has been introduced to select the most informative samples for labeling. In this paper, we present a novel batch mode active learning scheme for informative sample selection. Inspired by the method of graph propagation, we not only take the correlation between labeled samples and unlabeled samples, but the correlation among unlabeled samples taken into account as well. Especially, considering the unbalanced distribution of samples and the personalized feedback of human we propose an asymmetric propagation scheme to unify the various criteria including uncertainty, diversity and density into batch mode active learning in relevance feedback. Extensive experiments on publicly available datasets show that the proposed method is promising.
机译:相关性反馈是一种通过利用人类标签来提高图像检索性能的有效方法。为了减轻标记的负担,已引入主动学习方法以选择最有信息的样本进行标记。在本文中,我们提出了一种用于信息样本选择的新型批处理模式主动学习方案。受到图传播方法的启发,我们不仅考虑了标记样品和未标记样品之间的相关性,还考虑了未标记样品之间的相关性。特别是,考虑到样本的不平衡分布和人类的个性化反馈,我们提出了一种非对称传播方案,将不确定性,多样性和密度等各种标准统一为相关反馈中的批处理模式主动学习。在公开的数据集上进行的大量实验表明,该方法很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号