首页> 外文期刊>Signal processing >A Bayesian approach for adaptive multiantenna sensing in cognitive radio networks
【24h】

A Bayesian approach for adaptive multiantenna sensing in cognitive radio networks

机译:认知无线电网络中自适应多天线感应的贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Recent work on multiantenna spectrum sensing in cognitive radio (CR) networks has been based on generalized likelihood ratio test (GLRT) detectors, which lack the ability to learn from past decisions and to adapt to the continuously changing environment. To overcome this limitation, in this paper we propose a Bayesian detector capable of learning in an efficient way the posterior distributions under both hypotheses. Our Bayesian model places priors directly on the spatial covariance matrices under both hypotheses, as well as on the probability of channel occupancy. Specifically, we use inverse-gamma and complex inverse-Wishart distributions as conjugate priors for the null and alternative hypotheses, respectively; and a binomial distribution as the prior for channel occupancy. At each sensing period, Bayesian inference is applied and the posterior for the channel occupancy is thresholded for detection. After a suitable approximation, the posteriors are employed as priors for the next sensing frame, which forms the basis of the proposed Bayesian learning procedure. The performance of the Bayesian detector is evaluated by simulations and by means of a CR testbed composed of universal radio peripheral (USRP) nodes. Both the simulations and experimental measurements show that the Bayesian detector outperforms the GLRT in a variety of scenarios.
机译:认知无线电(CR)网络中关于多天线频谱感测的最新工作已基于广义似然比测试(GLRT)检测器,该检测器缺乏从过去的决策中吸取教训并无法适应不断变化的环境的能力。为了克服这一局限性,本文提出了一种贝叶斯检测器,该贝叶斯检测器能够有效地学习两个假设下的后验分布。我们的贝叶斯模型将先验直接置于两个假设下的空间协方差矩阵以及通道占用的概率上。具体来说,我们分别使用反伽玛分布和复杂反维沙特分布作为零假设和替代假设的共轭先验。和二项式分布作为信道占用的先验。在每个感测周期,应用贝叶斯推断,并且将信道占用的后验阈值进行检测。在适当的近似之后,将后验作为下一个感测帧的先验,这构成了提出的贝叶斯学习过程的基础。贝叶斯检测器的性能通过仿真和由通用无线电外围设备(USRP)节点组成的CR测试台进行评估。仿真和实验测量均表明,在各种情况下,贝叶斯检测器的性能均优于GLRT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号