首页> 外文期刊>Signal processing >Design of signal extraction algorithms based on second order statistics exploiting beamforming techniques
【24h】

Design of signal extraction algorithms based on second order statistics exploiting beamforming techniques

机译:基于二阶统计的波束成形技术信号提取算法设计

获取原文
获取原文并翻译 | 示例

摘要

Signal extraction methods are becoming increasingly popular due to lower computational demands and less restrictive requirements than source separation algorithms. Many existing signal extraction algorithms extract interesting signals based on some known features of the sources. However, immediate extraction of the desired signal is not guaranteed, leading to inefficient and ad hoc deflation techniques. We present a design strategy for efficient signal extraction algorithms. First, by incorporating some amount of prior information in the form of a guess of either the autocorrelation function or the mixing column of the desired source, immediate identification of the desired extraction filter is guaranteed. Second, for a parameterized mixing system new techniques for the design and evaluation of signal extraction algorithms have been developed. These techniques are used to ensure immediate extraction of the desired signal by exploiting knowledge on physical parameters. The design procedure is flexible in the use of a priori information and leads to extraction algorithms that are robust to noise, deal with incomplete prior information, and handle modeling errors. Furthermore, the extraction algorithms can be used to identify extraction filters with different objectives. The design procedure and the properties of the extraction algorithms are evaluated by examples and experiments.
机译:与源分离算法相比,由于较低的计算需求和较少的约束需求,信号提取方法正变得越来越流行。许多现有的信号提取算法都是基于信号源的某些已知特征来提取有趣的信号。但是,不能保证立即提取所需信号,从而导致效率低下和特别的放气技术。我们提出了一种有效的信号提取算法的设计策略。首先,通过以自相关函数或所需源的混合列的猜测形式合并一些先验信息,可以确保立即识别所需提取过滤器。其次,对于参数化混合系统,已经开发出用于信号提取算法的设计和评估的新技术。这些技术用于通过利用有关物理参数的知识来确保立即提取所需信号。设计过程可以灵活地使用先验信息,并导致提取算法具有较强的抗噪能力,处理不完整的先验信息并处理建模错误。此外,提取算法可用于识别具有不同目标的提取过滤器。通过实例和实验对提取算法的设计过程和性质进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号