首页> 外文期刊>Signal processing >Uncertainty principles for hypercomplex signals in the linear canonical transform domains
【24h】

Uncertainty principles for hypercomplex signals in the linear canonical transform domains

机译:线性规范变换域中超复杂信号的不确定性原理

获取原文
获取原文并翻译 | 示例

摘要

Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. In this paper, we extend the uncertainty principle for hypercomplex signals in the linear canonical transform domains, giving the tighter lower bound on the product of the effective widths of complex paravector- (multivector-)valued signals in the time and frequency domains. It is seen that this lower bound can be achieved by a Gaussian signal. An example is given to verify the result.
机译:线性规范变换(LCT)是一类积分变换,在光学,声学,电磁和其他波传播问题中具有广泛的应用。傅立叶和分数傅立叶变换是LCT的特例。在本文中,我们扩展了线性正则变换域中超复杂信号的不确定性原理,从而给出了时域和频域中复矢量(多矢量)值信号的有效宽度乘积的更严格的下界。可以看出,该下限可以通过高斯信号来实现。给出一个例子来验证结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号