首页> 外文期刊>Signal processing >Missing samples analysis in signals for applications to L-estimation and compressive sensing
【24h】

Missing samples analysis in signals for applications to L-estimation and compressive sensing

机译:信号中的缺失样本分析,用于L估计和压缩感测

获取原文
获取原文并翻译 | 示例

摘要

This paper provides statistical analysis for efficient detection of signal components when missing data samples are present. This analysis is important for both the areas of L-statistics and compressive sensing. In both cases, few samples are available due to either noisy sample elimination or random undersampling signal strategies. The analysis enables the determination of the sufficient number of observation and as such the minimum number of missing samples which still allow proper signal detection. Both single component and multicomponent signals are considered. The results are verified by computer simulations using different component frequencies and under various missing-available samples scenarios.
机译:本文提供了统计分析,可以在丢失数据样本时有效地检测信号分量。此分析对于L统计量和压缩感测领域都很重要。在这两种情况下,由于有噪声的样本消除或随机的欠采样信号策略,很少有样本可用。该分析使得能够确定足够数量的观察,并因此确定仍允许适当信号检测的最小丢失样本数。单分量和多分量信号都被考虑。通过计算机仿真使用不同的组件频率并在各种缺少样本的情况下验证了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号