首页> 外文期刊>Signal processing >Non-blind image deblurring method by local and nonlocal total variation models
【24h】

Non-blind image deblurring method by local and nonlocal total variation models

机译:基于局部和非局部总变化模型的非盲图像去模糊方法

获取原文
获取原文并翻译 | 示例

摘要

Although the total variation (TV) model can preserve the salient edges of the image, it smoothes out the image details. To preserve the salient edges while restoring the image details effectively, in this paper, we propose a new non-blind image deblurring (NBID) method, which combines the TV and the nonlocal total variation (NLTV) models. First, the original image is decomposed into three components: salient edges, details, and constant regions by a global gradient extraction scheme (GGES). Second, the TV model is applied on the salient edges and constant regions, and the NLTV model is applied on the details. At last, a split Bregman based multi-variable minimization (SBMM) iterative scheme is employed to optimize the proposed NBID inverse problem. Experiments demonstrate the viability and efficiency of the proposed method in terms of subjective vision, peak signal-to-noise ratio (PSNR), and self-similarity measure (SSIM).
机译:尽管总变化(TV)模型可以保留图像的显着边缘,但可以平滑图像细节。为了在有效地恢复图像细节的同时保留显着边缘,我们提出了一种新的非盲图像去模糊(NBID)方法,该方法结合了TV和非局部总变化(NLTV)模型。首先,通过全局梯度提取方案(GGES)将原始图像分解为三个部分:显着边缘,细节和恒定区域。其次,将TV模型应用于显着边缘和恒定区域,将NLTV模型应用于细节。最后,采用基于分裂Bregman的多变量最小化(SBMM)迭代方案来优化所提出的NBID反问题。实验证明了该方法在主观视觉,峰值信噪比(PSNR)和自相似性度量(SSIM)方面的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号